9491 measured reflections

 $R_{\rm int} = 0.073$

3216 independent reflections

1916 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Cyclohexyl-3-(4-hydroxy-6-oxo-1,6dihydropyrimidin-5-yl)-3-*p*-tolylpropanamide

Xing-Han Wang, Wen-Juan Hao and Shu-Jiang Tu*

School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China Correspondence e-mail: laotu2001@263.net

Received 4 January 2009; accepted 11 January 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.104; data-to-parameter ratio = 13.7.

In the molecule of the title compound, $C_{20}H_{25}N_3O_3$, the aromatic rings are oriented at a dihedral angle of 88.36 (3)°. The cyclohexane ring adopts a chair conformation. In the crystal structure, intermolecular N-H···O and O-H···N hydrogen bonds link the molecules. C-H··· π interactions are also present.

Related literature

For general background, see: Johar *et al.* (2005); Janeba *et al.* (2005); Soloducho *et al.* (2003); Mathews & Asokan (2007); Lagoja (2005); Michael (2005); Erian (1993). For bond-length data, see: Allen *et al.* (1987). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{25}N_{3}O_{3}\\ M_{r}=355.43\\ Monoclinic, P2_{1}/n\\ a=7.1563 \ (12) \ \text{\AA}\\ b=19.637 \ (2) \ \text{\AA}\\ c=13.2746 \ (18) \ \text{\AA}\\ \beta=101.740 \ (2)^{\circ} \end{array}$

 $V = 1826.5 (4) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) K $0.23 \times 0.16 \times 0.14 \text{ mm}$ Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
T_{\rm min} = 0.980, T_{\rm max} = 0.988
```

Refinement

T | | | |

$R[F^2 > 2\sigma(F^2)] = 0.048$	235 parameters
$wR(F^2) = 0.104$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
3216 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

l'able l			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O3^{i}$ $O1 - H1 A \cdots N2^{ii}$	0.86 0.82	1.98 1.95	2.813 (3) 2 753 (3)	162 168
$N3-H3\cdots O2^{iii}$	0.86	2.19	2.992 (4)	155
$C17 - H17B \cdots Cg2^{W}$ $C20 - H20A \cdots Cg2^{V}$	0.97 0.97	2.47 2.74	3.440 (3) 3.629 (3)	177 152

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 2, -z + 2; (iii) -x + 2, -y + 2, -z + 1; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x, -y, -z + 1. Cg2 is centroid of the C8–C13 ring.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL* (Bruker, 1998).

We thank the Natural Science Foundation of China (grant No. 20672090) and Natural Science Foundation of Jiangsu Province (grant No. BK2006033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2610).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Erian, A. W. (1993). Chem. Rev. 93, 1991-2005.
- Janeba, Z., Balzarini, J., Andrei, G., Snoeck, R., De Clercq, E. & Robins, M. J. (2005). J. Med. Chem. 48, 4690–4696.
- Johar, M., Manning, T., Kunimoto, D. Y. & Kumar, R. (2005). Bioorg. Med. Chem. 13, 6663–6671.
- Lagoja, I. M. (2005). Chem. Biodivers. 2, 1-50.
- Mathews, A. & Asokan, C. V. (2007). Tetrahedron, 63, 7845-7849.
- Michael, J. P. (2005). Nat. Prod. Rep. 22, 627 646.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soloducho, J., Doskocz, J., Cabaj, J. & Roszak, S. (2003). Tetrahedron, 59, 4761–4766.

Acta Cryst. (2009). E65, o309 [doi:10.1107/S1600536809001251]

N-Cyclohexyl-3-(4-hydroxy-6-oxo-1,6-dihydropyrimidin-5-yl)-3-p-tolylpropanamide

X.-H. Wang, W.-J. Hao and S.-J. Tu

Comment

The pyrimidines and their derivatives as a class of extremely important heterocyclic compounds are used in a wide array of synthetic and industrial applications. Not only they are an integral part of the genetic materials, *viz*. DNA and RNA as nucleotides and nucleosides but also play critical roles especially in pharmaceutical fields (Johar *et al.*, 2005; Janeba *et al.*, 2005). Some pyrimidine derivatives can give stable and good quality nanomaterials having many important electrical and optical properties (Soloducho *et al.*, 2003; Mathews & Asokan, 2007), and also used as functional materials (Lagoja, 2005; Michael, 2005; Erian, 1993). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (N1/N2/C1-C4) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of 88.36 (3)°. The cyclohexane ring C (C15-C20), having total puckering amplitude, Q_T, of 0.565 (3) Å, chair conformation [φ = -30.33 (3)° and θ = 4.00 (3)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O and O-H···N hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure. There also exist C–H··· π interactions (Table 1).

Experimental

The title compound was prepared by the reaction of *p*-tolylidene-Meldrum's acid (1 mmol) with 6-hydroxypyrimidin-4(3*H*)one (1 mmol) and cyclohexanamine (1 mmol) at 373 K in glacial acetic acid under microwave irradiation (maximum power 250 W, initial power 100 W) for 18 min (yield; 83%, m.p. 534–536 K). Crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation.

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N,O)$, where x = 1.5 for methyl and OH H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

N-Cyclohexyl-3-(4-hydroxy-6-oxo-1,6-dihydropyrimidin-5-yl)- 3-p-tolylpropanamide

Crystal data	
C ₂₀ H ₂₅ N ₃ O ₃	$F_{000} = 760$
$M_r = 355.43$	$D_{\rm x} = 1.293 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Melting point = 534–536 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.1563 (12) Å	Cell parameters from 1921 reflections
<i>b</i> = 19.637 (2) Å	$\theta = 2.6 - 27.7^{\circ}$
c = 13.2746 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 101.740 \ (2)^{\circ}$	T = 298 (2) K
$V = 1826.5 (4) \text{ Å}^3$	Block, colorless
Z = 4	$0.23 \times 0.16 \times 0.14 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3216 independent reflections
Radiation source: fine-focus sealed tube	1916 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -8 \rightarrow 8$
$T_{\min} = 0.980, T_{\max} = 0.988$	$k = -23 \rightarrow 21$
9491 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0354P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
3216 reflections	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

C13

H13

C14

H14A

H14B

0.9251 (3)

0.7807 (4)

1.0118

0.8643

0.8168

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 01 0.0456 (5) 0.8327(2)1.04303 (8) 0.89288 (11) H1A 0.8598 1.0297 0.9526 0.068* O2 0.0511 (5) 1.1335 (2) 1.04358 (9) 0.60752 (11) O3 0.5892(2)0.93937 (8) 0.69802 (11) 0.0447(4)N1 1.00038 (10) 1.2782 (3) 0.76292 (14) 0.0387 (5) H10.9909 0.046* 1.3786 0.7394 N2 1.1340(3)0.99789 (9) 0.90587 (13) 0.0367(5)N3 0.7956 (3) 0.91122 (9) 0.59665 (13) 0.0378 (5) H3 0.045* 0.8514 0.9251 0.5488 C1 1.2753 (3) 0.98462 (12) 0.86043 (17) 0.0396 (6) H1B 0.048* 1.3815 0.9626 0.8987 C2 0.9778 (3) 1.02944 (11) 0.84599 (16) 0.0316 (5) C3 0.9650(3) 1.04690 (10) 0.74467 (15) 0.0290 (5) C4 1.1234 (3) 1.03189 (11) 0.69730(17) 0.0346 (6) C5 0.6857 (3) 0.95565 (11) 0.63376 (16) 0.0329 (6) C6 0.6872 (3) 1.02749 (11) 0.59477 (16) 0.0350(6) H6A 0.55721.0422 0.5679 0.042* H6B 1.0291 0.042* 0.7563 0.5391 C7 0.7820(3) 1.07626 (11) 0.68124 (15) 0.0317 (6) H7 0.6931 1.0795 0.7283 0.038* C8 0.8005 (3) 1.14835 (11) 0.64204 (16) 0.0302 (5) C9 0.6815 (3) 1.17248 (12) 0.55327 (17) 0.0366 (6) H9 0.6022 1.1421 0.5108 0.044* C10 0.0400 (6) 0.6781 (3) 1.24068 (12) 0.52658 (18) H10 0.5952 1.2553 0.4672 0.048* C11 0.7955 (4) 1.28759 (12) 0.0393 (6) 0.58638 (19) C12 0.9218 (4) 1.26311 (12) 0.67173 (19) 0.0412 (6) H12 1.0068 1.2931 0.049* 0.7115

1.19530 (12)

1.36269 (12)

1.1806

1.3731

1.3892

0.69940 (17)

0.7573

0.5135

0.6212

0.5595 (2)

0.0367 (6) 0.044*

0.0587 (8)

0.088*

0.088*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14C	0.6517	1.3734	0.5269	0.088*
C15	0.8280 (3)	0.84081 (11)	0.63122 (17)	0.0367 (6)
H15	0.7200	0.8266	0.6614	0.044*
C16	1.0092 (4)	0.83383 (13)	0.71338 (18)	0.0488 (7)
H16A	0.9999	0.8627	0.7714	0.059*
H16B	1.1174	0.8492	0.6857	0.059*
C17	1.0429 (4)	0.76056 (13)	0.75025 (19)	0.0532 (7)
H17A	1.1649	0.7576	0.7979	0.064*
H17B	0.9442	0.7473	0.7868	0.064*
C18	1.0418 (4)	0.71171 (14)	0.6614 (2)	0.0593 (8)
H18A	1.1538	0.7198	0.6324	0.071*
H18B	1.0483	0.6653	0.6869	0.071*
C19	0.8642 (4)	0.72005 (12)	0.5780 (2)	0.0556 (8)
H19A	0.7536	0.7057	0.6043	0.067*
H19B	0.8738	0.6910	0.5202	0.067*
C20	0.8367 (4)	0.79365 (12)	0.54125 (18)	0.0435 (6)
H20A	0.9418	0.8070	0.5095	0.052*
H20B	0.7195	0.7975	0.4900	0.052*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0413 (10)	0.0669 (13)	0.0301 (9)	0.0186 (9)	0.0109 (8)	0.0084 (8)
O2	0.0557 (12)	0.0680 (13)	0.0339 (10)	0.0139 (10)	0.0193 (9)	0.0113 (8)
O3	0.0467 (11)	0.0426 (10)	0.0503 (10)	0.0067 (8)	0.0227 (9)	0.0080 (8)
N1	0.0312 (12)	0.0497 (13)	0.0373 (11)	0.0088 (10)	0.0120 (10)	0.0044 (10)
N2	0.0357 (12)	0.0444 (13)	0.0295 (11)	0.0122 (10)	0.0057 (9)	0.0041 (9)
N3	0.0432 (13)	0.0354 (12)	0.0390 (11)	0.0032 (10)	0.0185 (10)	0.0063 (9)
C1	0.0356 (15)	0.0456 (15)	0.0353 (14)	0.0085 (12)	0.0020 (12)	0.0041 (11)
C2	0.0292 (13)	0.0365 (14)	0.0286 (13)	0.0043 (11)	0.0047 (11)	-0.0004 (10)
C3	0.0301 (13)	0.0301 (13)	0.0257 (12)	0.0031 (11)	0.0030 (10)	0.0007 (10)
C4	0.0371 (15)	0.0360 (14)	0.0304 (13)	0.0042 (12)	0.0061 (12)	0.0026 (11)
C5	0.0296 (14)	0.0373 (15)	0.0302 (13)	-0.0008 (11)	0.0024 (11)	0.0011 (11)
C6	0.0363 (15)	0.0344 (14)	0.0319 (13)	0.0028 (11)	0.0016 (11)	0.0038 (10)
C7	0.0340 (14)	0.0347 (14)	0.0263 (12)	0.0042 (11)	0.0059 (11)	0.0018 (10)
C8	0.0277 (13)	0.0324 (14)	0.0305 (13)	0.0052 (11)	0.0063 (11)	0.0021 (11)
C9	0.0315 (14)	0.0359 (15)	0.0403 (14)	-0.0024 (11)	0.0020 (12)	0.0036 (11)
C10	0.0372 (15)	0.0397 (15)	0.0420 (15)	0.0012 (13)	0.0053 (12)	0.0081 (12)
C11	0.0348 (15)	0.0356 (15)	0.0493 (16)	0.0008 (12)	0.0130 (13)	0.0031 (12)
C12	0.0328 (15)	0.0378 (15)	0.0537 (17)	-0.0081 (12)	0.0104 (13)	-0.0084 (12)
C13	0.0292 (14)	0.0418 (15)	0.0376 (14)	0.0014 (12)	0.0034 (12)	-0.0012 (11)
C14	0.066 (2)	0.0381 (17)	0.0760 (19)	0.0006 (14)	0.0241 (16)	0.0061 (14)
C15	0.0355 (15)	0.0356 (15)	0.0413 (14)	0.0049 (11)	0.0132 (12)	0.0074 (11)
C16	0.0460 (17)	0.0539 (17)	0.0462 (16)	0.0012 (14)	0.0090 (14)	0.0077 (13)
C17	0.0423 (17)	0.0642 (19)	0.0551 (17)	0.0101 (14)	0.0148 (14)	0.0224 (15)
C18	0.0567 (19)	0.0523 (19)	0.075 (2)	0.0196 (15)	0.0281 (17)	0.0207 (15)
C19	0.059 (2)	0.0414 (17)	0.071 (2)	0.0062 (14)	0.0233 (17)	-0.0026 (14)
C20	0.0406 (16)	0.0427 (16)	0.0477 (15)	0.0063 (13)	0.0099 (13)	-0.0021 (12)

Geometric parameters (Å, °)

N1—C1	1.335 (3)	C10—H10	0.9300
N1—C4	1.406 (3)	C11—C12	1.384 (3)
N1—H1	0.8600	C11—C14	1.516 (3)
N2—C1	1.305 (3)	C12—C13	1.380 (3)
N2—C2	1.380 (3)	C12—H12	0.9300
N3—C5	1.334 (3)	C13—H13	0.9300
N3—C15	1.460 (3)	C14—H14A	0.9600
N3—H3	0.8600	C14—H14B	0.9600
O1—C2	1.341 (2)	C14—H14C	0.9600
01—H1A	0.8200	C15—C16	1.522 (3)
O2—C4	1.230 (2)	C15—C20	1.523 (3)
O3—C5	1.244 (2)	C15—H15	0.9800
C1—H1B	0.9300	C16—C17	1.523 (3)
C2—C3	1.373 (3)	C16—H16A	0.9700
C3—C4	1.435 (3)	C16—H16B	0.9700
С3—С7	1.519 (3)	C17—C18	1.519 (4)
С5—С6	1.504 (3)	C17—H17A	0.9700
С6—С7	1.542 (3)	C17—H17B	0.9700
С6—Н6А	0.9700	C18—C19	1.515 (4)
С6—Н6В	0.9700	C18—H18A	0.9700
С7—С8	1.523 (3)	C18—H18B	0.9700
С7—Н7	0.9800	C19—C20	1.525 (3)
С8—С9	1.390 (3)	C19—H19A	0.9700
C8—C13	1.396 (3)	C19—H19B	0.9700
C9—C10	1.384 (3)	C20—H20A	0.9700
С9—Н9	0.9300	С20—Н20В	0.9700
C10-C11	1.383 (3)		
C1—N1—C4	122.5 (2)	C13—C12—H12	119.1
C1—N1—H1	118.8	C11—C12—H12	119.1
C4—N1—H1	118.8	C12—C13—C8	121.2 (2)
C1—N2—C2	115.89 (18)	C12—C13—H13	119.4
C5—N3—C15	124.82 (18)	C8—C13—H13	119.4
С5—N3—H3	117.6	C11—C14—H14A	109.5
C15—N3—H3	117.6	C11—C14—H14B	109.5
C2	109.5	H14A—C14—H14B	109.5
N2-C1-N1	124.6 (2)	C11—C14—H14C	109.5
N2—C1—H1B	117.7	H14A—C14—H14C	109.5
N1—C1—H1B	117.7	H14B—C14—H14C	109.5
O1—C2—C3	120.1 (2)	N3-C15-C16	111.59 (19)
01—C2—N2	115.78 (18)	N3-C15-C20	111.02 (18)
C3—C2—N2	124.1 (2)	C16—C15—C20	110.01 (19)
C2—C3—C4	118.5 (2)	N3—C15—H15	108.0
C2—C3—C7	121.06 (19)	C16—C15—H15	108.0
C4—C3—C7	120.26 (18)	C20—C15—H15	108.0
O2-C4-N1	119.2 (2)	C15—C16—C17	111.8 (2)
O2—C4—C3	126.4 (2)	C15—C16—H16A	109.3

		a a	
N1—C4—C3	114.34 (18)	С17—С16—Н16А	109.3
O3—C5—N3	122.4 (2)	C15—C16—H16B	109.3
O3—C5—C6	121.4 (2)	C17—C16—H16B	109.3
N3—C5—C6	116.14 (19)	H16A—C16—H16B	107.9
C5—C6—C7	111.05 (17)	C18—C17—C16	111.8 (2)
С5—С6—Н6А	109.4	C18—C17—H17A	109.3
С7—С6—Н6А	109.4	С16—С17—Н17А	109.3
С5—С6—Н6В	109.4	C18—C17—H17B	109.3
С7—С6—Н6В	109.4	С16—С17—Н17В	109.3
H6A—C6—H6B	108.0	H17A—C17—H17B	107.9
C3—C7—C8	114.65 (18)	C19—C18—C17	111.7 (2)
C3—C7—C6	112.09 (17)	C19-C18-H18A	109.3
C8—C7—C6	112.24 (17)	C17-C18-H18A	109.3
С3—С7—Н7	105.7	C19-C18-H18B	109.3
С8—С7—Н7	105.7	C17-C18-H18B	109.3
С6—С7—Н7	105.7	H18A—C18—H18B	107.9
C9—C8—C13	116.8 (2)	C18—C19—C20	111.7 (2)
C9—C8—C7	121.7 (2)	С18—С19—Н19А	109.3
C13—C8—C7	121.2 (2)	С20—С19—Н19А	109.3
C10—C9—C8	121.5 (2)	С18—С19—Н19В	109.3
С10—С9—Н9	119.2	С20—С19—Н19В	109.3
С8—С9—Н9	119.2	H19A—C19—H19B	107.9
C11—C10—C9	121.4 (2)	C15—C20—C19	110.4 (2)
C11—C10—H10	119.3	С15—С20—Н20А	109.6
C9—C10—H10	119.3	С19—С20—Н20А	109.6
C10—C11—C12	117.3 (2)	С15—С20—Н20В	109.6
C10—C11—C14	120.5 (2)	С19—С20—Н20В	109.6
C12—C11—C14	122.2 (2)	H20A—C20—H20B	108.1
C13—C12—C11	121.7 (2)		
$C_2 N_2 C_1 N_1$	11(3)	C^{2} C^{7} C^{8} C^{9}	153 35 (10)
$C_2 = N_2 = C_1 = N_1$	-1.1(3)	$C_{2} = C_{2} = C_{2}$	133.33(19)
$C_1 = N_2 = C_2 = O_1$	1.0(4)	$C_{0} = C_{1} = C_{0} = C_{1}^{2}$	-2222(2)
$C_1 = N_2 = C_2 = C_1^2$	-0.1(2)	$C_{5} = C_{7} = C_{8} = C_{13}^{12}$	-162.62(10)
$C_1 = N_2 = C_2 = C_3$	-0.1(3)	$C_0 = C_1 = C_0 = C_{13}$	-102.02(19)
01 - 02 - 03 - 04	1/9.7(2)	C13 - C8 - C9 - C10	-4.0(3)
$N_2 = C_2 = C_3 = C_4$	-0.3(3)	C/-C8-C9-C10	169.7 (2)
01 - 02 - 03 - 07	-5.2 (3)		1.0 (3)
N2 - C2 - C3 - C7	174.9 (2)	C9—C10—C11—C12	2.5 (3)
C1—N1—C4—O2	-178.3(2)	C9—C10—C11—C14	-1/6.1 (2)
C1—N1—C4—C3	1.3 (3)	C10-C11-C12-C13	-3.1 (3)
C2—C3—C4—O2	179.2 (2)	C14—C11—C12—C13	175.5 (2)
C7—C3—C4—O2	4.0 (4)	C11—C12—C13—C8	0.1 (3)
C2—C3—C4—N1	-0.3 (3)	C9—C8—C13—C12	3.4 (3)
C7—C3—C4—N1	-175.56 (18)	C7—C8—C13—C12	-170.3 (2)
C15—N3—C5—O3	-4.8 (3)	C5—N3—C15—C16	-94.9 (3)
C15—N3—C5—C6	174.2 (2)	C5—N3—C15—C20	142.0 (2)
O3—C5—C6—C7	66.6 (3)	N3—C15—C16—C17	179.60 (18)
N3—C5—C6—C7	-112.4 (2)	C20—C15—C16—C17	-56.7 (3)
C2—C3—C7—C8	117.4 (2)	C15—C16—C17—C18	54.0 (3)
C4—C3—C7—C8	-67.5 (3)	C16—C17—C18—C19	-52.2 (3)

C2—C3—C7—C6	-113.1 (2)	C17—C18—C19—C20		54.0 (3)	
C4—C3—C7—C6	62.0 (3)	N3-C15-C20-C19		-178.2 (2)	
C5—C6—C7—C3	44.5 (2)	C16—C15—C20—C19		57.8 (3)	
C5—C6—C7—C8	175.24 (18)	C18—C19—C20—C15		-57.0 (3)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
N1—H1···O3 ⁱ	0.86	1.98	2.813 (3)	162	
O1—H1A···N2 ⁱⁱ	0.82	1.95	2.753 (3)	168	
N3—H3····O2 ⁱⁱⁱ	0.86	2.19	2.992 (4)	155	
C17—H17B····Cg2 ^{iv}	0.97	2.47	3.440 (3)	177	
C20—H20A····Cg2 ^v	0.97	2.74	3.629 (3)	152	
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+2$, $-y+2$, $-z+2$; (iii) $-x+2$, $-y+2$, $-z+1$; (iv) $-x+1/2$, $y+1/2$, $-z+1/2$; (v) $-x$, $-y$, $-z+1$.					

